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Background

Problem: Insufficient Token Interactions in Temporal Modeling

Query Token

Input Video: “Throwing something in the air and catching it”

(a) Cross-Frame Attention: “Moving something and something so they pass each other”

(b) Temporal Window Expansion: “Throwing something in the air and letting it fall”

(d) Temporal Contextualization (Ours): “Throwing something in the air and catching it”

(c) Joint Space-Time Attention: “Pretending to turn something upside down”
Using context tokens as a reference

during the feature encoding 
consistently improves 

video recognition performance.
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Temporal window expansion
Frame-wise attention

Temporal contextualization (ours)
Joint space-time attention
Cross-frame attention

(a) Attention map comparison (b) Quantitative analysis on temporal modelings

Joint Space-Time Attention: “Pulling something from behind of something”

Class Label: “Moving something closer to something”

Frame-wise Attention: “Moving something closer to something”

1 2

Experiments SOTA performance in zero/few-shot, 
base2novel, fully-supervised video recognition
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Table 2: Comparison with state-of-the-arts on zero-shot action recognition.

All the models are trained on Kinetics-400 and directly evaluated on other datasets. WE
indicates the weight-space ensemble between the fine-tuned model and CLIP, adopted
for all applicable models for fair comparisons. † denotes results reproduced using our
implementation. The best results are in bold-faced numbers, and the second-best ones
are underlined. Our results using the original and LLM-rephrased category names are
highlighted in blue and purple , respectively.

Method WE HMDB-51 UCF-101 K600 (Top-1) K600 (Top-5) All (Top-1)

Vanilla CLIP [32] 40.8 ± 0.3 63.2 ± 0.2 59.8 ± 0.3 83.5 ± 0.2 54.6
ActionCLIP [39]† 49.1 ± 0.4 68.0 ± 0.9 56.1 ± 0.9 83.2 ± 0.2 57.7
A5 [14] 44.3 ± 2.2 69.3 ± 4.2 55.8 ± 0.7 81.4 ± 0.3 56.5
X-CLIP [29] 44.6 ± 5.2 72.0 ± 2.3 65.2 ± 0.4 86.1 ± 0.8 60.6
Vita-CLIP [41] 48.6 ± 0.6 75.0 ± 0.6 67.4 ± 0.5 - 63.7
ViFi-CLIP [34]† 52.3 ± 0.2 78.9 ± 1.1 70.7 ± 0.8 92.1 ± 0.3 67.3
TC-CLIP (Ours) 53.7 ± 0.7 80.4 ± 0.9 72.7 ± 0.5 93.2 ± 0.2 68.9

ActionCLIP [39]† X 51.9 ± 0.5 74.2 ± 1.0 67.5 ± 1.2 90.7 ± 0.1 64.5
ViFi-CLIP [34]† X 52.2 ± 0.7 81.0 ± 0.9 73.9 ± 0.5 93.3 ± 0.3 69.0
Open-VCLIP [42] X 53.9 ± 1.2 83.4 ± 1.2 73.0 ± 0.8 93.2 ± 0.1 70.1
TC-CLIP (Ours) X 54.2 ± 0.7 82.9 ± 0.6 75.8 ± 0.5 94.4 ± 0.2 71.0

Using LLM-based text augmentation
MAXI [24] X 52.3 ± 0.7 78.2 ± 0.8 71.5 ± 0.8 92.5 ± 0.4 67.3
OST [4] X 55.9 ± 1.2 79.7 ± 1.1 75.1 ± 0.6 94.6 ± 0.2 70.2
FROSTER [10] X 54.8 ± 1.3 84.8 ± 1.1 74.8 ± 0.9 - 71.5
TC-CLIP (Ours) X 56.0 ± 0.3 85.4 ± 0.8 78.1 ± 1.0 95.7 ± 0.3 73.2

3 Experiments

We conduct experiments on 5 video benchmarks: Kinetics-400 [16] & 600 [2],
HMDB-51 [21], UCF-101 [37], and Something-Something v2 (SSv2) [9]. Follow-
ing [34], our evaluation protocols include zero-shot, few-shot, base-to-novel gen-
eralization, and fully-supervised action recognition tasks. We adopt CLIP with
ViT-B/16 for all experiments and our baseline is ViFi-CLIP [34]. All models are
trained using 4 NVIDIA Tesla V100 GPUs. More details are in the appendix.

3.1 Quantitative Comparison

We mainly compare our method with CLIP-based video recognition models:
Vanilla CLIP [32], ActionCLIP [39], A5 [14], X-CLIP [29], Vita-CLIP [41], ViFi-
CLIP [34], Open-VCLIP [42], OST [4], and FROSTER [10]. For the fair compar-
isons with approaches based on Large Language Model (LLM) with text augmen-
tation [4, 10, 24], we produce two versions of our results: one using the original
action category names (colored in blue ) and the other adopting the LLM-
rephrased category names obtained from FROSTER [10] (colored in purple ).
Note that experiments on the SSv2 dataset do not involve LLM-rephrasing.

Zero-shot action recognition. Table 2 exhibits the zero-shot generalization
ability of several models, where they are trained on K-400 and then directly
evaluated on individual datasets. For fair comparisons with recent models [4,
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Table 5: Fully-supervised ac-

tion recognition results on

Kinetics-400. Views means (tem-
poral clips)⇥ (spatial crops), and
F denotes number of frames.

Method Top-1 Top-5 F Views

ActionCLIP [39] 83.8 96.2 32 10⇥ 3
X-CLIP [29] 84.7 96.8 16 4⇥ 3
Vita-CLIP [41] 82.9 96.3 16 4⇥ 3
ViFi-CLIP [34] 83.9 96.3 16 4⇥ 3
OST [4] 83.2 - 16 1⇥ 1
TC-CLIP (Ours) 85.2 96.9 16 4⇥ 3

Table 6: Computational costs with the average
top-1 accuracies of all protocols. The Throughput
per view (TP) is measured on a single A6000 GPU.
§ denotes that TC is partly applied to the 4th, 8th,
and 12th layers of the vision encoder.

Method Zero Few B2N Full Params GFLOPs TP

ActionCLIP [39] 64.5 46.5 46.0 83.8 143.7M 567 20
X-CLIP [29] 60.6 50.2 49.5 84.7 169.7M 288 36
Vita-CLIP [41] 63.7 - - 82.9 161.8M 307 30
ViFi-CLIP [34] 69.0 52.9 55.5 83.9 124.3M 285 38

Open-VCLIP [42] 70.1 - 56.5 - 124.3M 308 29
TC-CLIP (Ours) 71.0 54.8 58.5 85.2 127.5M 304 24
TC-CLIP (Ours)§ 70.7 54.4 58.6 84.9 127.5M 291 34

Table 7: Component-wise ablations on the zero-shot setting. � denotes the
average top-1 accuracy gain over baseline.

Without weight-space ensembling With weight-space ensembling

Case HMDB-51 UCF-101 K-600 All (�) HMDB-51 UCF-101 K-600 All (�)

Baseline 52.3± 0.2 78.9± 1.1 70.7± 0.8 67.3 52.2± 0.7 81.0± 0.9 73.9± 0.5 69.0

(a) +TC 53.6± 0.2 78.6± 1.0 71.8± 0.7 68.0 (+0.7) 54.3± 0.6 81.9± 1.0 75.5± 1.0 70.6 (+1.6)
(b) +VP 53.2± 0.8 80.5± 0.7 71.6± 0.9 68.4 (+1.1) 53.4± 0.8 82.0± 0.9 74.7± 0.7 70.0 (+1.0)
(c) +TC+VP 53.7± 0.7 80.4± 0.9 72.7± 0.5 68.9 (+1.6) 54.2± 1.1 82.9± 0.9 75.8± 0.4 71.0 (+2.0)

evaluated both on the K-400 dataset. TC-CLIP achieves top-1 accuracy of 85.2%
in the validation split, improving 1.3%p over our baseline ViFi-CLIP [34].

Computational cost. Table 6 compares the computational cost with the aver-
age accuracy of all tasks. We introduce a lightweight implementation of TC-CLIP
(denoted by §), where TC is only applied to the 4th, 8th, and 12th layers of the
vision encoder. Despite its reasonable cost, it performs best across all proto-
cols by significant margins. In particular, compared to Open-VCLIP [42], this
lightweight version improves accuracy by 0.6%p and 2.1%p in the zero-shot and
base-to-novel tasks, respectively, while maintaining 17.2% higher throughput.

3.2 Analysis and Discussion

This section examines the design choices and impact of each component in
our model: Temporal Contextualization (TC) and Video-conditional Prompting
(VP). We mainly adopt the zero- and few-shot settings and report the average
of top-1 accuracy with K = 2, 4, 8, 16 for the K-shot setup. In addition to the
analyses discussed in this subsection, we present more analyses and qualitative
results in the supplementary document.

Component-wise ablation. Table 7 shows the impact of TC and VP on our
baseline in the zero-shot setting. Integrating TC gives an average gain of 0.7%p
over the baseline and the gap increases to 1.6%p after adopting WE; WE is
more favorable to our approach than the baseline. Adopting VP also leads to
a substantial gain of 1.1%p, highlighting its own contribution. When both VP

12 M. Kim et al.

Table 8: Effect of TC with various token aggregation strategies. TC con-
sistently outperforms the frame-wise attention baseline across several different token
selection and merging methods. K-shot action recognition results are reported with
the top-1 accuracy averaged over K = 2, 4, 8, 16. Default settings are marked in gray .

(a) Seed token selection strategy.

Case HMDB UCF SSv2 All (�)

Baseline 62.6 89.2 8.7 53.5

No selection 62.8 89.8 9.7 54.1 (+0.6)

Head-wise key norm 62.3 89.8 9.8 54.0 (+0.5)
Averaged key norm 62.5 89.4 9.3 53.7 (+0.2)
Head-wise CLS attn. 63.4 89.9 9.7 54.3 (+0.8)
Averaged CLS attn. 63.4 90.2 9.9 54.5 (+1.0)
Patch saliency [5] 62.9 90.3 9.6 54.2 (+0.7)
ATS [8] 63.5 90.3 9.8 54.5 (+1.0)

(b) Context token summarization strategy.

Case HMDB UCF SSv2 All (�)

Baseline 62.6 89.2 8.7 53.5

No merge 57.2 85.6 7.7 50.2 (�3.3)
Random merge 58.8 87.1 7.5 51.2 (�2.3)

K-means [25] 62.1 89.7 9.0 53.6 (+0.1)
DPC-KNN [13] 63.3 90.2 9.8 54.4 (+0.9)
Bipartite soft matching [1, 15] 63.4 90.2 9.9 54.5 (+1.0)
Bipartite w/ attention weights 62.9 89.8 9.9 54.2 (+0.7)
Bipartite w/ saliency weights [5] 62.4 89.9 9.6 54.0 (+0.5)

Table 9: TC design ablation. We report K-shot training results where the top-1
accuracy in each dataset is averaged over K = 2, 4, 8, 16. Bias is defined in Eq. (8).

(a) Positional embedding design.

Case HMDB UCF SSv2 All

Spatial embedding 62.9 90.0 9.8 54.2
Joint space-time embedding 63.2 90.2 9.8 54.4
Spatial embedding + Bias 63.4 90.2 9.9 54.5

Joint embedding + Bias 62.9 90.2 9.8 54.3

(b) Seed token ratio ↵.

↵ HMDB UCF SSv2 All

0.2 62.6 90.1 9.8 54.2
0.3 63.4 90.2 9.9 54.5
0.4 63.2 90.4 9.8 54.5
0.5 63.3 90.3 9.8 54.5
0.6 63.1 90.2 9.8 54.4

(c) Context token k.

k HMDB UCF SSv2 All

16 63.1 89.3 9.1 53.8
32 63.6 89.9 9.4 54.3
64 63.7 90.1 9.7 54.5

96 63.4 90.2 9.9 54.5

128 62.8 90.1 9.9 54.3

and TC are applied to the baseline, an average improvement goes up to 1.6%p,
which finally leads to 2.0%p gain after applying WE.

Token aggregation strategies. In Table 8, we verify the effectiveness of TC
across diverse token aggregation methods. Experiments are conducted on the
few-shot setting using the baseline model with TC. (a) While TC still works
well without token selection, we observe that collecting informative seed tokens
based on token importance, such as attention or saliency scores, improves the
quality of encoded tokens by suppressing the background. (b) Directly using
the seed tokens without merging reduces performance due to the extrapolation
issue. The degradation with random merging also highlights the requirement of
token clustering based on relevance. Finally, consistent gains from various token
merging approaches verify the robustness of TC regardless of algorithms.

Positional embedding. Table 9(a) shows that using the proposed learnable
bias (Eq. (8)) with spatial positional embedding yields the best result. We con-
jecture that the bias effectively consolidates the local frame-level information
and global video-level information in a layer-wise and head-wise manner.

Number of seed and context tokens. While TC is not sensitive to the choice
of ↵, as shown in Table 9(b), we picked ↵ = 0.3 as our default value, i.e., using
30% of total tokens as seed tokens. In Table 9(c), the context token number k is
chosen to set a modest amount of merging degree.

• Component-wise ablation: TC and VP are both effective.

• TC is robust across diverse token aggregation strategies.
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Table 10: Text prompting design ablation on the zero-shot setting. All the
models are evaluated without the weight ensemble.

Case Use context tokens? HMDB-51 UCF-101 K-600 All (�)

Baseline 52.3 ± 0.2 78.9 ± 1.1 70.7 ± 0.8 67.3

(a) Learnable prompt vectors 52.4 ± 0.4 78.4 ± 1.3 70.6 ± 0.7 67.1 (�0.2)
(b) Video-conditional prompting 53.2 ± 0.8 80.4 ± 0.7 71.6 ± 0.9 68.4 (+1.1)
(c) Video-conditional prompting X 53.7 ± 0.7 80.4 ± 0.9 72.7 ± 0.5 68.9 (+1.6)
(d) Vision-text late-fusion X 53.7 ± 0.7 79.0 ± 0.7 70.9 ± 0.6 67.9 (+0.6)

Class: “Disc golfing” (K-400)

Seed Tokens

Context Tokens

Fig. 6: Context token visualization.

TC-CLIP selects the informative seed to-
kens and summarizes them into context
tokens across frames. The disc (red) is
merged into one token over the video.

Class: “Moving something and something away from each other” (SSv2)

ViFi-CLIP: “Moving something and something so they collide with each other”

TC-CLIP: “Moving something and something away from each other”

Fig. 7: Attention visualization. While
ViFi-CLIP fails to attend to the hands
moving away and misinterprets the action
as colliding, TC-CLIP correctly predicts
by exploiting temporal consistency.

Text prompting design. In Table 10, we observe that (a) a naïve integration of
learnable prompt vectors without video instance conditioning is not particularly
helpful for the zero-shot transferability, rather decreasing the average accuracy.
In contrast, (b) employing VP design with [CLS] tokens consistently improves
the accuracy across all datasets, and (c) using context tokens further enhances
the performance, resulting in a 1.6%p gain. We also compare VP with (d) vision-
text late-fusion design, i.e., the cross-attention of context tokens and the final
representation of the text embedding. This design performs worse in UCF-101
and K-600 datasets than our VP, verifying the effectiveness of our design choice.

Context token visualization. Fig. 6 visualizes the seed tokens and context
tokens from the last layer of the vision encoder in TC-CLIP. In this video, the
informative regions regarding the action of disc golfing in each frame, including
the person and the disc, are selected as seed tokens. To visualize each context
token, we colorize its corresponding source token positions using the average
color of the input video patches of that region. Note that a single context token
(highlighted in red) successfully tracks the disc across multiple frames.

Attention visualization. Fig. 7 visualizes the attention map of ViFi-CLIP [34]
and TC-CLIP on the SSv2 dataset. In this video, where two hands grab objects
and then move away, ViFi-CLIP [34] fails to attend to the hands from the middle
of the sequence and misinterprets the action as colliding with each other. In

• Context-token-conditional text prompting is effective.

• Results on zero-shot action recognition

Temporal Contextualization enhances CLIP’s video understanding capability
by infusing global information within the encoding process.
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(a) Attention map comparison (b) Quantitative analysis on temporal modelings

Joint Space-Time Attention: “Pulling something from behind of something”

Class Label: “Moving something closer to something”

Frame-wise Attention: “Moving something closer to something”

Pitfall of Joint Space-Time Attention

A naïve extension of CLIP’s temporal 
sequence length degrades attention quality 
because it wasn’t trained on long sequences.

Temporal Contextualization (TC)

• Key Idea: Summarize informative tokens from the entire video into a small set of 
tokens, called context tokens, and reference them during feature encoding.

Video-conditional Prompting (VP)

• VP generates instance-level prompts to compensate for the lack of textual semantics.

• Video information from context tokens is injected to text prompt vectors 
using a cross-attention mechanism.
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operations and computes the average of the attention scores from all heads, i.e.,
āt,i =

P
H

h=1 a
h

t,i
/H, where ah

t,i
= ah(zt,i) is the attention score for the i

th patch
zt,i in the t

th frame and H is the number of heads. Finally, we identify a set of
seed token indices for the t

th frame, St, by selecting ns elements with the highest
attention scores, where ns is controlled by a hyperparameter ↵ = ns/N .

Temporal context summarization. We describe how to connect the seed
tokens derived from individual frames based on their relevance and identify a
collection of context tokens. We first collect the seed tokens from all frames as
{ẑt,i}(t,i)2S , where S = {(t, i)|i 2 St, t = 1, . . . , T} is a set of seed token indices
from all frames and ẑt,i indicates an interim token encoded from zt,i via the
self-attention operation. Then we perform their spatio-temporal summarization
by clustering and merging all the seed tokens as

ŝ = �
�
{ẑt,i}(t,i)2S

�
, (6)

where ŝ 2 Rk⇥D denotes a collection of the summarized tokens, which we call
context tokens, and � is a token aggregation function. While diverse token ag-
gregation techniques are valid for TC (See Table 8), we adopt bipartite soft
matching [1, 15] by default. Subsequently, the context tokens ŝ are fed into a
feed-forward network (FFN).

Temporal context infusion. Finally, we infuse the summarized context to all
patch tokens by modifying the self-attention function. The keys and values of
self-attention in every frame are expanded to include context tokens as follows:

AttentionTC(zt, s) = Softmax
⇣Qzt

⇥
Kzt |Ks

⇤T
p
d

+B
⌘⇥

Vzt |Vs

⇤
, (7)

where Ks = sWk and Vs = sWv are linear projections of the context tokens
s 2 Rk⇥d. Here, B 2 R(N+1)⇥(N+k+1) is a bias matrix that distinguishes between
frame-level local information and video-level global information in the expanded
key matrix as follows:

Bij =

(
blocal if j  N + 1

bglobal otherwise,
(8)

where blocal and bglobal are learnable parameters and defined for multiple heads
at each layer. We build our TC pipeline in a layer-wise manner, and thus the
encoding process of each layer is expressed as

ẑl
t
=

(
MHSA(LN(zl�1

t
)) + zl�1

t
if l = 1

MHSATC(LN(zl�1
t

),LN(sl�1)) + zl�1
t

otherwise,
(9)

zl
t
= FFN(LN(ẑl

t
)) + ẑl

t
, (10)

sl = FFN(LN(ŝl)) + ŝl, (11)

where MHSATC(·, ·) denotes the MHSA operation based on Eq. (7) and LN(·)
stands for the layer normalization function.
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(
blocal if j  N + 1

bglobal otherwise,
(8)

where blocal and bglobal are learnable parameters and defined for multiple heads
at each layer. We build our TC pipeline in a layer-wise manner, and thus the
encoding process of each layer is expressed as

ẑl
t
=

(
MHSA(LN(zl�1

t
)) + zl�1

t
if l = 1

MHSATC(LN(zl�1
t

),LN(sl�1)) + zl�1
t

otherwise,
(9)

zl
t
= FFN(LN(ẑl

t
)) + ẑl

t
, (10)

sl = FFN(LN(ŝl)) + ŝl, (11)

where MHSATC(·, ·) denotes the MHSA operation based on Eq. (7) and LN(·)
stands for the layer normalization function.

KV of context tokens

QKV of t-th frame patch tokens

Learnable bias
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operations and computes the average of the attention scores from all heads, i.e.,
āt,i =

P
H

h=1 a
h

t,i
/H, where ah

t,i
= ah(zt,i) is the attention score for the i

th patch
zt,i in the t

th frame and H is the number of heads. Finally, we identify a set of
seed token indices for the t

th frame, St, by selecting ns elements with the highest
attention scores, where ns is controlled by a hyperparameter ↵ = ns/N .

Temporal context summarization. We describe how to connect the seed
tokens derived from individual frames based on their relevance and identify a
collection of context tokens. We first collect the seed tokens from all frames as
{ẑt,i}(t,i)2S , where S = {(t, i)|i 2 St, t = 1, . . . , T} is a set of seed token indices
from all frames and ẑt,i indicates an interim token encoded from zt,i via the
self-attention operation. Then we perform their spatio-temporal summarization
by clustering and merging all the seed tokens as

ŝ = �
�
{ẑt,i}(t,i)2S

�
, (6)

where ŝ 2 Rk⇥D denotes a collection of the summarized tokens, which we call
context tokens, and � is a token aggregation function. While diverse token ag-
gregation techniques are valid for TC (See Table 8), we adopt bipartite soft
matching [1, 15] by default. Subsequently, the context tokens ŝ are fed into a
feed-forward network (FFN).

Temporal context infusion. Finally, we infuse the summarized context to all
patch tokens by modifying the self-attention function. The keys and values of
self-attention in every frame are expanded to include context tokens as follows:
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⇥
Kzt |Ks
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d
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⌘⇥

Vzt |Vs

⇤
, (7)

where Ks = sWk and Vs = sWv are linear projections of the context tokens
s 2 Rk⇥d. Here, B 2 R(N+1)⇥(N+k+1) is a bias matrix that distinguishes between
frame-level local information and video-level global information in the expanded
key matrix as follows:

Bij =

(
blocal if j  N + 1

bglobal otherwise,
(8)

where blocal and bglobal are learnable parameters and defined for multiple heads
at each layer. We build our TC pipeline in a layer-wise manner, and thus the
encoding process of each layer is expressed as

ẑl
t
=

(
MHSA(LN(zl�1

t
)) + zl�1

t
if l = 1

MHSATC(LN(zl�1
t

),LN(sl�1)) + zl�1
t

otherwise,
(9)

zl
t
= FFN(LN(ẑl

t
)) + ẑl

t
, (10)

sl = FFN(LN(ŝl)) + ŝl, (11)

where MHSATC(·, ·) denotes the MHSA operation based on Eq. (7) and LN(·)
stands for the layer normalization function.

Tokenize

Vision Encoder

Temporal
Pooling

…

Text Encoder

…

“Kicking soccer ball”

Maximize
Similarity

( See our paper for more results! )

M I L A N O
2 0 2 4

VERSIONE POSITIVA

• Tuning CLIP for video recognition enables open-vocab 
generalization without expensive video-text pretraining.

• A naïve baseline: frame-wise attention 
à Limitation: no token interactions in the temporal axis

• To consider temporal cues, prior works additionally 
incorporate reference tokens:

t-th frame patch tokens reference tokens
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Table 1: Motivation: What is the proper format for reference tokens? We
compare 16-shot training results using various types of reference tokens during the
frame-level representation encoding process. Using context tokens consistently improves
the baseline model regardless of the choice of the token aggregation function.

Type of reference tokens HMDB-51 UCF-101 SSv2

Baseline (No reference tokens) 67.1 93.3 12.0

[CLS] tokens from all frames [30,43] 67.2 (+0.1) 93.2 (�0.1) 12.3 (+0.3)
Patch tokens from adjacent frames [44] 67.8 (+0.7) 93.2 (�0.1) 12.8 (+0.8)
Patch tokens from all frames 63.3 (�3.8) 91.9 (�1.4) 12.0 (+0.0)

Context tokens — K-means [26] 68.0 (+0.9) 93.3 (+0.0) 13.1 (+1.1)
Context tokens — DPC-KNN [14] 67.9 (+0.8) 94.0 (+0.7) 14.3 (+2.3)
Context tokens — Bipartite soft matching [1, 16] 68.0 (+0.9) 93.8 (+0.5) 14.3 (+2.3)
Context tokens — Saliency-aware bipartite matching [6] 67.3 (+0.2) 93.7 (+0.4) 13.6 (+1.6)

where f
l

✓c
(·) denotes the l

th layer of the CLIP text encoder. The final text repre-
sentations c is obtained by projecting the [EOS] token from the last layer to the
vision-language latent space using a matrix Wtext 2 Rdl⇥dvl , i.e., c = cLc

eosWtext.

Video-text alignment. The similarity between video and text embeddings are
formulated as sim(v, c) = hv,ci

kvkkck . During training, the goal is to maximize the
similarity if V and C are matched and minimize otherwise. For inference, the
category with the highest similarity is chosen as the prediction.

2.2 Motivation

Despite the successful generalization of CLIP for action recognition, its visual
feature encoding process in Eq. (2) constrains the model’s ability to capture
comprehensive spatio-temporal dynamics because it only considers intra-frame
token relationships. This limitation has led previous works to additionally in-
corporate reference tokens, denoted by s, to encode the t

th frame tokens zt as

zl
t
= f

l

✓v
(zl�1

t
, sl�1). (4)

However, their reference token designs are still limited due to insufficient spatio-
temporal interaction range. For instance, cross-frame attention (Fig. 2(a)) [30,43]
utilizes learnable global embedding vectors, e.g ., [CLS] tokens, from all frames to
define the reference token as s = [z1,0, ..., zT,0], and temporal window expansion
(Fig. 2(b)) [44], on the other hand, integrates neighboring frame patch tokens for
s = [zt�1, zt+1]. Note that the former lacks patch-level details whereas the latter
captures temporal information only within a local range. Although incorporating
all patch tokens from a whole video as a reference (Fig. 2(c)), s = [z1, ..., zT ],
might be conceptually reasonable, it is not practical due to the excessive num-
ber of tokens. Furthermore, this approach conflicts with the properties of CLIP
pretrained on short image-text pairs and significantly degrades attention quality.

To this end, we compute a reference, s = �([z1, ..., zT ]), using a small set
of context tokens that summarize a whole input video, where �(·) is a token


