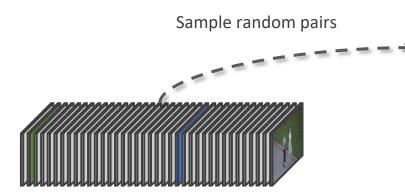
Towards Sequence-Level Training for Visual Tracking

Minji Kim^{1*} Seungkwan Lee^{2,3*} Jungseul Ok² Bohyung Han¹ Minsu Cho²

¹ Seoul National University

- ² POSTECH
- ³ Deeping Source Inc.
- * denotes equal contribution



Visual Object Tracking (VOT)

- Given the target state (e.g., box) in the first frame, VOT aims to predict the target state in the subsequent frames
- Recent paradigm: Frame-Level Training (FLT)

Training video

Target template

Search frame

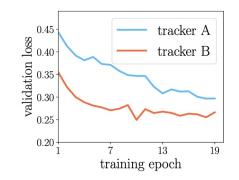
Learn how to localize the target on the search frame **independently for each pair**

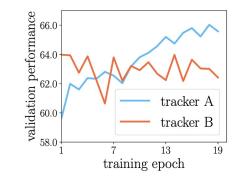
Disregard the sequential dependency

Pitfall of Frame-Level Training

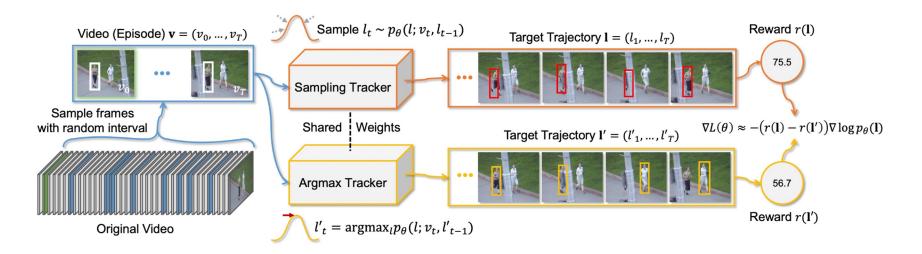
• FLT does not necessarily improve the actual tracking performance

Training / Testing Inconsistency

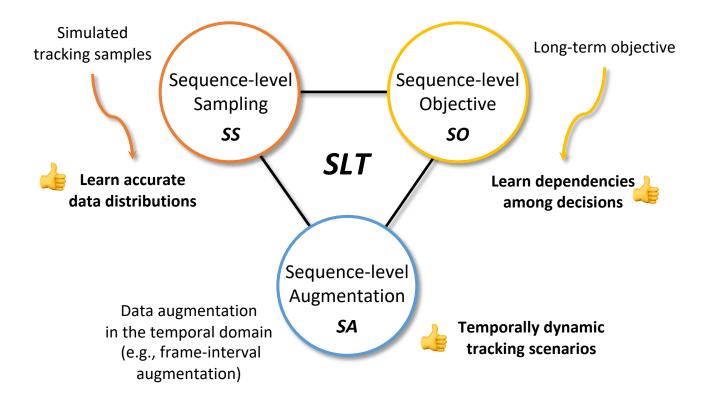



	Testing	Frame-Level Training
Data Distributions	Search window is determined by <i>previous</i> estimation	Search window is determined by GT + random perturbation
Task Objectives	Retaining successful localization over a sequence	Immediate localization quality in each frame

Training / Testing Inconsistency


Tracker A gives a higher loss according to the frame-level objective After 10 epochs, tracker A outperforms tracker B in terms of sequence-level performance

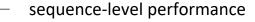
Mismatch between validation loss/performance



- Goal: to resolve the training / testing inconsistency in recent trackers
- Sequence-Level Training (SLT)
 - Based on reinforcement learning
 - Train a model by **actually tracking** on a video and **directly optimizing** a test-time metric

- Problem definition
 - Given a video $\mathbf{v} = (v_0, \dots, v_T)$ and GT box g_0 of frame v_0 ,

a tracker sequentially predicts a bounding box l_t of the target in each frame

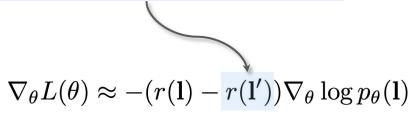

prediction
$$\rightarrow l_t = \pi_{\theta}(o_t)$$
 \longrightarrow $\mathbf{l} = (l_1, \dots, l_T)$
 \uparrow Sequence of decisions
tracker (agent)

Objective of tracking : maximize a sequence-level performance $r(\mathbf{l})$

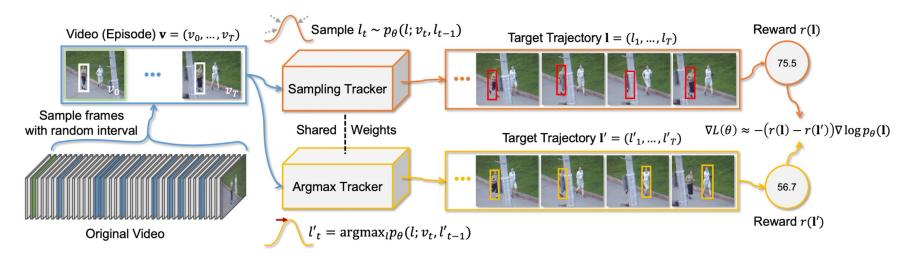
- Idea: directly optimize the real objective of tracking
 - Minimize the negative expected reward:

$$L(heta) := -\mathbb{E}_{\mathbf{l}\sim\pi_{ heta}}[r(\mathbf{l})]$$

data samples (= tracking trajectories)
from a tracker

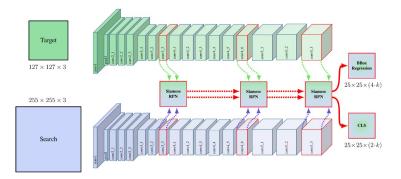

• Approximate the gradient with REINFORCE algorithm:

$$\nabla_{\theta} L(\theta) = -\mathbb{E}_{\mathbf{l} \sim \pi_{\theta}} [r(\mathbf{l}) \nabla_{\theta} \log p_{\theta}(\mathbf{l})] \longrightarrow \nabla_{\theta} L(\theta) \approx -r(\mathbf{l}) \nabla_{\theta} \log p_{\theta}(\mathbf{l})$$

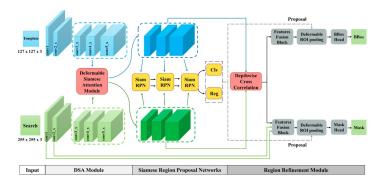


- Self-critical sequence training
 - To reduce a variance of gradient estimation
 - Exploit the test-mode performance of the current model as a baseline for the reward

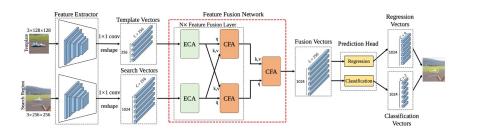
Reward from Reward from sampling mode argmax mode

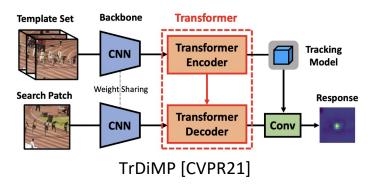

$$\nabla_{\theta} L(\theta) \approx -(r(\mathbf{l}) - r(\mathbf{l}')) \nabla_{\theta} \log p_{\theta}(\mathbf{l})$$

Self-critical reward



Integration into Tracking Algorithms




SiamRPN++ [CVPR19]

SiamAttn [CVPR20]

TransT [CVPR21]

Integration into Tracking Algorithms

Our training method assumes the target localization is a *stochastic* action

$$p(n) = \frac{\exp(\sigma^{-1}(x_n))}{\sum_{m=1}^{N} \exp(\sigma^{-1}(x_m))} \longrightarrow L = -(r(\mathbf{l}) - r(\mathbf{l}')) \sum_{t=1}^{T} \log p(n_t)$$

Convert *greedy* target selection to become *stochastic*

Plug the self-critical loss into the classification branch

$$L_{\text{siamrpn++}} = \frac{L}{L} + L_{\text{bbox}}$$

$$L_{\text{siamattn}} = \frac{L}{L} + \lambda_1 L_{\text{bbox}} + \lambda_2 L_{\text{refine-bbox}} + \lambda_3 L_{\text{mask}}$$

$$\frac{L_{\text{transt}}}{L_{\text{transt}}} = \frac{L}{L} + \lambda_4 L_{\text{bbox-L1}} + \lambda_5 L_{\text{bbox-GIoU}}$$

$$\frac{L_{\text{trdimp}}}{L_{\text{trdimp}}} = \frac{L}{L} + \lambda_6 L_{\text{iou-net}}$$

Experiments

SiamRPN++ Base 51.0 60.3 68.2 78.3 68.9 49.5 58.0	
$\frac{AUC(\Delta) P_{Norm}}{SiamRPN++} Base 51.0 60.3 68.2 78.3 68.9 49.5 58.0 C_{NOT}$	
StamRPN++	$R_{0.75}$
	0.5
+SLT 58.4 (+7.4) 66.6 75.8 (+7.6) 81.0 71.3 62.1 (+12.6) 74.9	9.0
Base 54.8 63.5 74.3 80.9 70.6 53.4 61.8 <th< td=""><td>6.4</td></th<>	6.4
+SLT 57.4 (+2.6) 66.2 76.9 (+2.6) 82.3 72.6 62.5 (+9.1) 75.4	0.2
TrDiMP Base 63.3 72.3 78.1 83.3 73.1 67.1 77.4 43.3	8.5
+SLT 64.4 (+1.1) 73.5 78.1 (+0.0) 83.1 73.1 67.5 (+0.4) 78.8	8.7
TransT Base 64.2 73.7 81.1 86.8 80.1 66.2 75.5 5	8.7
Trails I +SLT 66.8 (+2.6) 75.5 82.8 (+1.7) 87.5 81.4 67.5 (+1.3) 76.5	0.3

Experiments

	PACNet	Ocean	DiMP50	PrDiMP50	TransT	STARK-	STARK-	SLT-	SLT-	SLT-	SLT-
	[46]	[48]	[2]	[8]	[4]	ST50 [42]	ST101 [42]	SiamRPN++	SiamAttn	TrDiMP	TransT
AUC (%)	55.3	56.0	56.9	59.8	64.2	66.4	67.1	58.4	57.4	64.4	66.8
P_{Norm} (%)	62.8	65.1	64.3	68.0	73.7	76.3	77.0	66.6	66.2	73.5	75.5

Table 2: Comparison with the state-of-the-art trackers on LaSOT.

Table 3: Comparison with the state-of-the-art trackers on TrackingNet.

	DiMP50	SiamFC++	MAML	PrDiMP50	TransT	STARK-	STARK-	SLT-	SLT-	SLT-	SLT-
	[2]	[41]	[35]	[8]	[4]	ST50 [42]	ST101 [42]	SiamRPN++	SiamAttn	TrDiMP	TransT
AUC (%)	74.0	75.4	75.7	75.8	81.1	81.3	82.0	75.8	76.9	78.1	82.8
P _{Norm} (%)	80.1	80.0	82.2	81.6	86.8	86.1	86.9	81.0	82.3	83.1	87.5

Table 4: Comparison with the state-of-the-art trackers on GOT-10k. 'Add. data' denotes that trackers are trained using additional training datasets other than GOT-10k.

	Add.	SiamFC++	DiMP50	Ocean	PrDiMP50	TransT	TrDiMP	STARK-	SLT-	SLT-	SLT-	SLT-
	data	[41]	[2]	[48]	[8]	[4]	[36]	ST50 [42]	SiamRPN++	SiamAttn	TrDiMP	TransT
AO (%)		59.5	61.1	61.1	63.4	66.2	67.1	68.0	62.1	62.5	67.5	67.5
SR _{0.5} (%)	-	69.5	71.7	72.1	73.8	75.5	77.4	77.7	74.9	75.4	78.8	76.5
SR _{0.75} (%)		47.9	49.2	47.3	54.3	58.7	58.5	62.3	49.0	50.2	58.7	60.3
AO (%)	\checkmark	-	60.4	-	65.2	71.9	68.6	71.5	56.9	62.8	69.0	72.5

Ablation

- Sequence-level Sampling (SS)
 - Robust to variations of aspect ratio, scale, rotation, illumination
- Sequence-level Objective (SO)
 - Prevent the tracker to lose the target in challenging situations such as full occlusion, background clutters, motion blur
- Sequence-level Augmentation (SA)
 - Boosts the overall performance

Table 5: Effect of sequence-level	l training components.
-----------------------------------	------------------------

Benchmark	SiamRPN++						
Deneminark	Baseline	+SS (Δ)	+SS+SO (Δ)	+SS+SO+SA (Δ)			
LaSOT (AUC)	51.0	55.1 (+4.1)	57.3 (+6.3)	58.4 (+7.4)			
TrackingNet (AUC)	68.2	73.5 (+5.3)	75.0 (+6.8)	75.8 (+7.6)			
GOT-10k (AO)	66.4	70.2 (+3.8)	73.8 (+7.4)	74.3 (+7.9)			

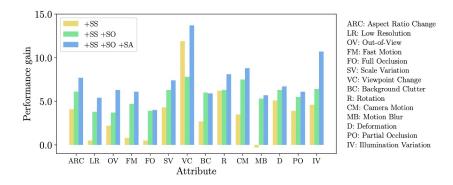


Fig. 3: Benefits of sequence-level training components to individual attributes on the LaSOT dataset. The baseline tracker is SiamRPN++, and the y-axis is performance (AUC) gain compared with the baseline tracker.

