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Background

Contrastive Language-Image Pretraining (CLIP) Fine-tune CLIP with video-text pairs

● Fine-tuning image-based VLMs (e.g., CLIP) for video action recognition enables 
open-vocabulary generalization w/o expensive video-text pretraining

● A naïve baseline: frame-wise attention
à Limitation: no token interactions in the temporal axis



Background
● To consider temporal cues during the frame-wise representation encoding, 

previous works additionally incorporate reference tokens:

● However, these reference tokens are insufficient for proper temporal modeling

t-th frame patch tokens reference tokens



● Short-range token interactions hinder models capturing essential temporal dynamics
● à We need global interactions to achieve better video representations!

Limitation of Previous Temporal Modeling

Short-range token interactions
Fail to capture essential video information
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Input Video: “Throwing something in the air and catching it”

(a) Cross-Frame Attention: “Moving something and something so they pass each other”

(b) Temporal Window Expansion: “Throwing something in the air and letting it fall”

(d) Temporal Contextualization (Ours): “Throwing something in the air and catching it”

(c) Joint Space-Time Attention: “Pretending to turn something upside down”



● A naïve approach for global interactions: using all patch tokens as a reference
● Problem: extending CLIP’s temporal sequence length degrades attention quality

because it wasn’t trained on long sequences

Limitation of Previous Temporal Modeling

Extrapolation challenge
Costly / Suboptimal performance
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● Key Idea: Summarize informative tokens from the entire video into a small set of tokens, 
called context tokens, and reference them during feature encoding

Solution: Temporal Contextualization

Short-range token interactions
Fail to capture essential video information

Extrapolation challenge
Costly / Suboptimal

Deliver global information
Maintain CLIP’s effective length
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● Key Idea: Summarize informative tokens from the entire video into a small set of tokens, 
called context tokens, and reference them during feature encoding

Solution: Temporal Contextualization
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(a) Attention map comparison (b) Quantitative analysis on temporal modelings

Joint Space-Time Attention: “Pulling something from behind of something”

Class Label: “Moving something closer to something”

Frame-wise Attention: “Moving something closer to something”

Using context tokens as a reference during the feature encoding 
consistently improves action recognition performance. Deliver global information

Maintain CLIP’s effective length
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● A novel paradigm of extending CLIP to videos by encoding holistic video information 
through advanced temporal analysis

1. Temporal Contextualization (TC): allows global interactions by summarizing pivotal video 
information into context tokens and referencing them during the encoding process

2. Video-conditional Prompting (VP):  injects instance contexts into text modality 
to support lack of textual semantics in action recognition benchmarks

3. Solid performance: TC-CLIP achieves SOTA on diverse benchmarks & protocols

Temporally Contextualized CLIP (TC-CLIP)
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● A layer-wise temporal information infusion mechanism for videos
● Three steps of TC

Temporal Contextualization (TC)
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● Step 1) Informative token selection in each frame
○ To avoid redundant tokens in videos, we select seed tokens by using CLS attention scores 

obtained from self-attention operation in each frame as criteria 

Temporal Contextualization (TC)

keys of patch tokensquery of CLS token

t-th frame patch tokens
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patch token
after self-attention

aggregation
function

● Step 2) Spatio-temporal context summarization
○ To obtain context tokens, cluster and merge all the seed tokens from all frames 

by using token aggregation function

Temporal Contextualization (TC)
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QKV of t-th frame patch tokens

KV of context tokens

Temporal Contextualization (TC)
● Step 3) Temporal context infusion

○ Finally, the summarized context is infused to all patch tokens by expanding key-value pairs:
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Video-conditional Prompting (VP)
● Generates instance-level textual prompts that support the lack of textual semantics 

in action recognition datasets, where category names are the only description of actions 
(e.g., skateboarding, skydiving, ski jumping)

● Video information from the context tokens is injected to the text prompt vectors 
based on a cross-attention mechanism
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Video-conditional Prompting (VP)
● We perform video-conditional prompting before the last text encoder layer:

prompt vectors

class name tokens

Context Tokens !! 

Prompt Vectors "!"# 

V-L Projection 
&

Stop-grad

(" − 1)-th Vision Encoder Layer #$!!"# 

"-th Vision Encoder Layer #$!!  

(" − 1)-th Text Encoder Layer #$"!"# 

"-th Text Encoder Layer #$"!  

Video-conditional Prompting #$#$ 

!%&'(!



Experiments
● SOTA performance on zero/few-shot, base-to-novel, fully-supervised action recognition

TC-CLIP 9

Table 2: Comparison with state-of-the-arts on zero-shot action recognition.

All the models are trained on Kinetics-400 and directly evaluated on other datasets. WE
indicates the weight-space ensemble between the fine-tuned model and CLIP, adopted
for all applicable models for fair comparisons. † denotes results reproduced using our
implementation. The best results are in bold-faced numbers, and the second-best ones
are underlined. Our results using the original and LLM-rephrased category names are
highlighted in blue and purple , respectively.

Method WE HMDB-51 UCF-101 K600 (Top-1) K600 (Top-5) All (Top-1)

Vanilla CLIP [32] 40.8 ± 0.3 63.2 ± 0.2 59.8 ± 0.3 83.5 ± 0.2 54.6
ActionCLIP [39]† 49.1 ± 0.4 68.0 ± 0.9 56.1 ± 0.9 83.2 ± 0.2 57.7
A5 [14] 44.3 ± 2.2 69.3 ± 4.2 55.8 ± 0.7 81.4 ± 0.3 56.5
X-CLIP [29] 44.6 ± 5.2 72.0 ± 2.3 65.2 ± 0.4 86.1 ± 0.8 60.6
Vita-CLIP [41] 48.6 ± 0.6 75.0 ± 0.6 67.4 ± 0.5 - 63.7
ViFi-CLIP [34]† 52.3 ± 0.2 78.9 ± 1.1 70.7 ± 0.8 92.1 ± 0.3 67.3
TC-CLIP (Ours) 53.7 ± 0.7 80.4 ± 0.9 72.7 ± 0.5 93.2 ± 0.2 68.9

ActionCLIP [39]† X 51.9 ± 0.5 74.2 ± 1.0 67.5 ± 1.2 90.7 ± 0.1 64.5
ViFi-CLIP [34]† X 52.2 ± 0.7 81.0 ± 0.9 73.9 ± 0.5 93.3 ± 0.3 69.0
Open-VCLIP [42] X 53.9 ± 1.2 83.4 ± 1.2 73.0 ± 0.8 93.2 ± 0.1 70.1
TC-CLIP (Ours) X 54.2 ± 0.7 82.9 ± 0.6 75.8 ± 0.5 94.4 ± 0.2 71.0

Using LLM-based text augmentation
MAXI [24] X 52.3 ± 0.7 78.2 ± 0.8 71.5 ± 0.8 92.5 ± 0.4 67.3
OST [4] X 55.9 ± 1.2 79.7 ± 1.1 75.1 ± 0.6 94.6 ± 0.2 70.2
FROSTER [10] X 54.8 ± 1.3 84.8 ± 1.1 74.8 ± 0.9 - 71.5
TC-CLIP (Ours) X 56.0 ± 0.3 85.4 ± 0.8 78.1 ± 1.0 95.7 ± 0.3 73.2

3 Experiments

We conduct experiments on 5 video benchmarks: Kinetics-400 [16] & 600 [2],
HMDB-51 [21], UCF-101 [37], and Something-Something v2 (SSv2) [9]. Follow-
ing [34], our evaluation protocols include zero-shot, few-shot, base-to-novel gen-
eralization, and fully-supervised action recognition tasks. We adopt CLIP with
ViT-B/16 for all experiments and our baseline is ViFi-CLIP [34]. All models are
trained using 4 NVIDIA Tesla V100 GPUs. More details are in the appendix.

3.1 Quantitative Comparison

We mainly compare our method with CLIP-based video recognition models:
Vanilla CLIP [32], ActionCLIP [39], A5 [14], X-CLIP [29], Vita-CLIP [41], ViFi-
CLIP [34], Open-VCLIP [42], OST [4], and FROSTER [10]. For the fair compar-
isons with approaches based on Large Language Model (LLM) with text augmen-
tation [4, 10, 24], we produce two versions of our results: one using the original
action category names (colored in blue ) and the other adopting the LLM-
rephrased category names obtained from FROSTER [10] (colored in purple ).
Note that experiments on the SSv2 dataset do not involve LLM-rephrasing.

Zero-shot action recognition. Table 2 exhibits the zero-shot generalization
ability of several models, where they are trained on K-400 and then directly
evaluated on individual datasets. For fair comparisons with recent models [4,

10 M. Kim et al.

Table 3: Comparison with state-of-the-arts on few-shot action recognition.

All the models are directly fine-tuned from CLIP. Our results using the original and
LLM-rephrased category names are highlighted in blue and purple , respectively.

HMDB-51 UCF-101 SSv2 All

Method K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 Avg.

Vanilla CLIP [32] 41.9 41.9 41.9 41.9 63.6 63.6 63.6 63.6 2.7 2.7 2.7 2.7 36.1
ActionCLIP [39] 47.5 57.9 57.3 59.1 70.6 71.5 73.0 91.4 4.1 5.8 8.4 11.1 46.5
A5 [14] 39.7 50.7 56.0 62.4 71.4 79.9 85.7 89.9 4.4 5.1 6.1 9.7 46.8
X-CLIP [29] 53.0 57.3 62.8 64.0 76.4 83.4 88.3 91.4 3.9 4.5 6.8 10.0 50.2
ViFi-CLIP [34] 57.2 62.7 64.5 66.8 80.7 85.1 90.0 92.7 6.2 7.4 8.5 12.4 52.9
TC-CLIP (Ours) 57.3 62.3 67.3 68.6 85.9 89.9 92.5 94.6 7.3 8.6 9.3 14.0 54.8

Using LLM-based text augmentation
OST [4] 59.1 62.9 64.9 68.2 82.5 87.5 91.7 93.9 7.0 7.7 8.9 12.2 53.9
TC-CLIP (Ours) 58.6 63.3 65.5 68.8 86.8 90.1 92.0 94.3 7.3 8.6 9.3 14.0 54.9

Table 4: Comparison with state-of-the-arts on base-to-novel generalization.

All the models are directly fine-tuned from CLIP. † results are taken from [10].

K-400 HMDB-51 UCF-101 SSv2 All (Avg.)

Method Base Novel HM Base Novel HM Base Novel HM Base Novel HM Base Novel HM

Vanilla CLIP [32] 62.3 53.4 57.5 53.3 46.8 49.8 78.5 63.6 70.3 4.9 5.3 5.1 49.8 42.3 45.7
ActionCLIP [39] 61.0 46.2 52.6 69.1 37.3 48.5 90.1 58.1 70.7 13.3 10.1 11.5 58.5 37.9 46.0
A5 [14] 69.7 37.6 48.8 46.2 16.0 23.8 90.5 40.4 55.8 8.3 5.3 6.4 53.7 24.8 33.9
X-CLIP [29] 74.1 56.4 64.0 69.4 45.5 55.0 89.9 58.9 71.2 8.5 6.6 7.4 60.5 41.9 49.5
ViFi-CLIP [34] 76.4 61.1 67.9 73.8 53.3 61.9 92.9 67.7 78.3 16.2 12.1 13.9 64.8 48.6 55.5
Open-VCLIP [42]† 76.5 62.6 68.9 70.3 50.4 58.9 94.8 77.5 85.3 16.0 11.0 13.0 64.4 50.4 56.5
TC-CLIP (Ours) 78.9 63.6 70.4 73.3 54.1 62.2 95.5 78.0 85.9 17.5 13.4 15.2 66.3 52.3 58.5

Using LLM-based text augmentation
FROSTER [10] 77.8 64.3 70.4 74.1 58.0 65.1 95.3 80.0 87.0 18.3 12.2 14.6 66.4 53.6 59.3
TC-CLIP (Ours) 79.1 65.4 71.6 73.3 59.1 65.5 95.4 81.6 88.0 17.5 13.4 15.2 66.3 54.9 60.1

10, 24, 42], we employ weight-space ensembling (WE) for all applicable models
except those freezing a backbone during fine-tuning. Specifically, the weights of
both vision and text encoders are linearly interpolated between CLIP and the
fine-tuned model as ✓w = (1� w) · ✓CLIP + w · ✓fine-tuned. TC-CLIP consistently
outperforms others across all datasets, showing its superior generalization ability.

Few-shot action recognition. We verify the learning capacity of our method
under a challenging few-shot scenario. In Table 3, models are directly fine-tuned
from CLIP on each dataset using K-shot samples, where K is 2, 4, 8, and 16.
TC-CLIP achieves the best performance with large margins from ViFi-CLIP [34].

Base-to-novel generalization. Similarly, models are directly fine-tuned from
CLIP using the base classes of each dataset and evaluated for both base and
novel classes. Table 4 reports top-1 accuracies on the base and novel classes with
their harmonic mean (HM). TC-CLIP performs the best on the novel classes and
HM across all datasets, especially showing solid results on the SSv2 dataset.

Fully-supervised action recognition. Table 5 shows performance comparison
results under the fully-supervised setting, where the models are trained and

10 M. Kim et al.

Table 3: Comparison with state-of-the-arts on few-shot action recognition.

All the models are directly fine-tuned from CLIP. Our results using the original and
LLM-rephrased category names are highlighted in blue and purple , respectively.

HMDB-51 UCF-101 SSv2 All

Method K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 Avg.

Vanilla CLIP [32] 41.9 41.9 41.9 41.9 63.6 63.6 63.6 63.6 2.7 2.7 2.7 2.7 36.1
ActionCLIP [39] 47.5 57.9 57.3 59.1 70.6 71.5 73.0 91.4 4.1 5.8 8.4 11.1 46.5
A5 [14] 39.7 50.7 56.0 62.4 71.4 79.9 85.7 89.9 4.4 5.1 6.1 9.7 46.8
X-CLIP [29] 53.0 57.3 62.8 64.0 76.4 83.4 88.3 91.4 3.9 4.5 6.8 10.0 50.2
ViFi-CLIP [34] 57.2 62.7 64.5 66.8 80.7 85.1 90.0 92.7 6.2 7.4 8.5 12.4 52.9
TC-CLIP (Ours) 57.3 62.3 67.3 68.6 85.9 89.9 92.5 94.6 7.3 8.6 9.3 14.0 54.8

Using LLM-based text augmentation
OST [4] 59.1 62.9 64.9 68.2 82.5 87.5 91.7 93.9 7.0 7.7 8.9 12.2 53.9
TC-CLIP (Ours) 58.6 63.3 65.5 68.8 86.8 90.1 92.0 94.3 7.3 8.6 9.3 14.0 54.9

Table 4: Comparison with state-of-the-arts on base-to-novel generalization.

All the models are directly fine-tuned from CLIP. † results are taken from [10].

K-400 HMDB-51 UCF-101 SSv2 All (Avg.)

Method Base Novel HM Base Novel HM Base Novel HM Base Novel HM Base Novel HM

Vanilla CLIP [32] 62.3 53.4 57.5 53.3 46.8 49.8 78.5 63.6 70.3 4.9 5.3 5.1 49.8 42.3 45.7
ActionCLIP [39] 61.0 46.2 52.6 69.1 37.3 48.5 90.1 58.1 70.7 13.3 10.1 11.5 58.5 37.9 46.0
A5 [14] 69.7 37.6 48.8 46.2 16.0 23.8 90.5 40.4 55.8 8.3 5.3 6.4 53.7 24.8 33.9
X-CLIP [29] 74.1 56.4 64.0 69.4 45.5 55.0 89.9 58.9 71.2 8.5 6.6 7.4 60.5 41.9 49.5
ViFi-CLIP [34] 76.4 61.1 67.9 73.8 53.3 61.9 92.9 67.7 78.3 16.2 12.1 13.9 64.8 48.6 55.5
Open-VCLIP [42]† 76.5 62.6 68.9 70.3 50.4 58.9 94.8 77.5 85.3 16.0 11.0 13.0 64.4 50.4 56.5
TC-CLIP (Ours) 78.9 63.6 70.4 73.3 54.1 62.2 95.5 78.0 85.9 17.5 13.4 15.2 66.3 52.3 58.5

Using LLM-based text augmentation
FROSTER [10] 77.8 64.3 70.4 74.1 58.0 65.1 95.3 80.0 87.0 18.3 12.2 14.6 66.4 53.6 59.3
TC-CLIP (Ours) 79.1 65.4 71.6 73.3 59.1 65.5 95.4 81.6 88.0 17.5 13.4 15.2 66.3 54.9 60.1

10, 24, 42], we employ weight-space ensembling (WE) for all applicable models
except those freezing a backbone during fine-tuning. Specifically, the weights of
both vision and text encoders are linearly interpolated between CLIP and the
fine-tuned model as ✓w = (1� w) · ✓CLIP + w · ✓fine-tuned. TC-CLIP consistently
outperforms others across all datasets, showing its superior generalization ability.

Few-shot action recognition. We verify the learning capacity of our method
under a challenging few-shot scenario. In Table 3, models are directly fine-tuned
from CLIP on each dataset using K-shot samples, where K is 2, 4, 8, and 16.
TC-CLIP achieves the best performance with large margins from ViFi-CLIP [34].

Base-to-novel generalization. Similarly, models are directly fine-tuned from
CLIP using the base classes of each dataset and evaluated for both base and
novel classes. Table 4 reports top-1 accuracies on the base and novel classes with
their harmonic mean (HM). TC-CLIP performs the best on the novel classes and
HM across all datasets, especially showing solid results on the SSv2 dataset.

Fully-supervised action recognition. Table 5 shows performance comparison
results under the fully-supervised setting, where the models are trained and

TC-CLIP 11

Table 5: Fully-supervised ac-

tion recognition results on

Kinetics-400. Views means (tem-
poral clips)⇥ (spatial crops), and
F denotes number of frames.

Method Top-1 Top-5 F Views

ActionCLIP [39] 83.8 96.2 32 10⇥ 3
X-CLIP [29] 84.7 96.8 16 4⇥ 3
Vita-CLIP [41] 82.9 96.3 16 4⇥ 3
ViFi-CLIP [34] 83.9 96.3 16 4⇥ 3
OST [4] 83.2 - 16 1⇥ 1
TC-CLIP (Ours) 85.2 96.9 16 4⇥ 3

Table 6: Computational costs with the average
top-1 accuracies of all protocols. The Throughput
per view (TP) is measured on a single A6000 GPU.
§ denotes that TC is partly applied to the 4th, 8th,
and 12th layers of the vision encoder.

Method Zero Few B2N Full Params GFLOPs TP

ActionCLIP [39] 64.5 46.5 46.0 83.8 143.7M 567 20
X-CLIP [29] 60.6 50.2 49.5 84.7 169.7M 288 36
Vita-CLIP [41] 63.7 - - 82.9 161.8M 307 30
ViFi-CLIP [34] 69.0 52.9 55.5 83.9 124.3M 285 38

Open-VCLIP [42] 70.1 - 56.5 - 124.3M 308 29
TC-CLIP (Ours) 71.0 54.8 58.5 85.2 127.5M 304 24
TC-CLIP (Ours)§ 70.7 54.4 58.6 84.9 127.5M 291 34

Table 7: Component-wise ablations on the zero-shot setting. � denotes the
average top-1 accuracy gain over baseline.

Without weight-space ensembling With weight-space ensembling

Case HMDB-51 UCF-101 K-600 All (�) HMDB-51 UCF-101 K-600 All (�)

Baseline 52.3± 0.2 78.9± 1.1 70.7± 0.8 67.3 52.2± 0.7 81.0± 0.9 73.9± 0.5 69.0

(a) +TC 53.6± 0.2 78.6± 1.0 71.8± 0.7 68.0 (+0.7) 54.3± 0.6 81.9± 1.0 75.5± 1.0 70.6 (+1.6)
(b) +VP 53.2± 0.8 80.5± 0.7 71.6± 0.9 68.4 (+1.1) 53.4± 0.8 82.0± 0.9 74.7± 0.7 70.0 (+1.0)
(c) +TC+VP 53.7± 0.7 80.4± 0.9 72.7± 0.5 68.9 (+1.6) 54.2± 1.1 82.9± 0.9 75.8± 0.4 71.0 (+2.0)

evaluated both on the K-400 dataset. TC-CLIP achieves top-1 accuracy of 85.2%
in the validation split, improving 1.3%p over our baseline ViFi-CLIP [34].

Computational cost. Table 6 compares the computational cost with the aver-
age accuracy of all tasks. We introduce a lightweight implementation of TC-CLIP
(denoted by §), where TC is only applied to the 4th, 8th, and 12th layers of the
vision encoder. Despite its reasonable cost, it performs best across all proto-
cols by significant margins. In particular, compared to Open-VCLIP [42], this
lightweight version improves accuracy by 0.6%p and 2.1%p in the zero-shot and
base-to-novel tasks, respectively, while maintaining 17.2% higher throughput.

3.2 Analysis and Discussion

This section examines the design choices and impact of each component in
our model: Temporal Contextualization (TC) and Video-conditional Prompting
(VP). We mainly adopt the zero- and few-shot settings and report the average
of top-1 accuracy with K = 2, 4, 8, 16 for the K-shot setup. In addition to the
analyses discussed in this subsection, we present more analyses and qualitative
results in the supplementary document.

Component-wise ablation. Table 7 shows the impact of TC and VP on our
baseline in the zero-shot setting. Integrating TC gives an average gain of 0.7%p
over the baseline and the gap increases to 1.6%p after adopting WE; WE is
more favorable to our approach than the baseline. Adopting VP also leads to
a substantial gain of 1.1%p, highlighting its own contribution. When both VP

Zero-shot action recognition Few-shot action recognition

Base-to-novel generalization

Fully-supervised action recognition



Analysis
● Component-wise ablation: TC and VP are both effective

● TC is robust across diverse token aggregation strategies
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evaluated both on the K-400 dataset. TC-CLIP achieves top-1 accuracy of 85.2%
in the validation split, improving 1.3%p over our baseline ViFi-CLIP [34].

Computational cost. Table 6 compares the computational cost with the aver-
age accuracy of all tasks. We introduce a lightweight implementation of TC-CLIP
(denoted by §), where TC is only applied to the 4th, 8th, and 12th layers of the
vision encoder. Despite its reasonable cost, it performs best across all proto-
cols by significant margins. In particular, compared to Open-VCLIP [42], this
lightweight version improves accuracy by 0.6%p and 2.1%p in the zero-shot and
base-to-novel tasks, respectively, while maintaining 17.2% higher throughput.

3.2 Analysis and Discussion

This section examines the design choices and impact of each component in
our model: Temporal Contextualization (TC) and Video-conditional Prompting
(VP). We mainly adopt the zero- and few-shot settings and report the average
of top-1 accuracy with K = 2, 4, 8, 16 for the K-shot setup. In addition to the
analyses discussed in this subsection, we present more analyses and qualitative
results in the supplementary document.

Component-wise ablation. Table 7 shows the impact of TC and VP on our
baseline in the zero-shot setting. Integrating TC gives an average gain of 0.7%p
over the baseline and the gap increases to 1.6%p after adopting WE; WE is
more favorable to our approach than the baseline. Adopting VP also leads to
a substantial gain of 1.1%p, highlighting its own contribution. When both VP
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Table 8: Effect of TC with various token aggregation strategies. TC con-
sistently outperforms the frame-wise attention baseline across several different token
selection and merging methods. K-shot action recognition results are reported with
the top-1 accuracy averaged over K = 2, 4, 8, 16. Default settings are marked in gray .

(a) Seed token selection strategy.

Case HMDB UCF SSv2 All (�)

Baseline 62.6 89.2 8.7 53.5

No selection 62.8 89.8 9.7 54.1 (+0.6)

Head-wise key norm 62.3 89.8 9.8 54.0 (+0.5)
Averaged key norm 62.5 89.4 9.3 53.7 (+0.2)
Head-wise CLS attn. 63.4 89.9 9.7 54.3 (+0.8)
Averaged CLS attn. 63.4 90.2 9.9 54.5 (+1.0)
Patch saliency [5] 62.9 90.3 9.6 54.2 (+0.7)
ATS [8] 63.5 90.3 9.8 54.5 (+1.0)

(b) Context token summarization strategy.

Case HMDB UCF SSv2 All (�)

Baseline 62.6 89.2 8.7 53.5

No merge 57.2 85.6 7.7 50.2 (�3.3)
Random merge 58.8 87.1 7.5 51.2 (�2.3)

K-means [25] 62.1 89.7 9.0 53.6 (+0.1)
DPC-KNN [13] 63.3 90.2 9.8 54.4 (+0.9)
Bipartite soft matching [1, 15] 63.4 90.2 9.9 54.5 (+1.0)
Bipartite w/ attention weights 62.9 89.8 9.9 54.2 (+0.7)
Bipartite w/ saliency weights [5] 62.4 89.9 9.6 54.0 (+0.5)

Table 9: TC design ablation. We report K-shot training results where the top-1
accuracy in each dataset is averaged over K = 2, 4, 8, 16. Bias is defined in Eq. (8).

(a) Positional embedding design.

Case HMDB UCF SSv2 All

Spatial embedding 62.9 90.0 9.8 54.2
Joint space-time embedding 63.2 90.2 9.8 54.4
Spatial embedding + Bias 63.4 90.2 9.9 54.5

Joint embedding + Bias 62.9 90.2 9.8 54.3

(b) Seed token ratio ↵.

↵ HMDB UCF SSv2 All

0.2 62.6 90.1 9.8 54.2
0.3 63.4 90.2 9.9 54.5
0.4 63.2 90.4 9.8 54.5
0.5 63.3 90.3 9.8 54.5
0.6 63.1 90.2 9.8 54.4

(c) Context token k.

k HMDB UCF SSv2 All

16 63.1 89.3 9.1 53.8
32 63.6 89.9 9.4 54.3
64 63.7 90.1 9.7 54.5

96 63.4 90.2 9.9 54.5

128 62.8 90.1 9.9 54.3

and TC are applied to the baseline, an average improvement goes up to 1.6%p,
which finally leads to 2.0%p gain after applying WE.

Token aggregation strategies. In Table 8, we verify the effectiveness of TC
across diverse token aggregation methods. Experiments are conducted on the
few-shot setting using the baseline model with TC. (a) While TC still works
well without token selection, we observe that collecting informative seed tokens
based on token importance, such as attention or saliency scores, improves the
quality of encoded tokens by suppressing the background. (b) Directly using
the seed tokens without merging reduces performance due to the extrapolation
issue. The degradation with random merging also highlights the requirement of
token clustering based on relevance. Finally, consistent gains from various token
merging approaches verify the robustness of TC regardless of algorithms.

Positional embedding. Table 9(a) shows that using the proposed learnable
bias (Eq. (8)) with spatial positional embedding yields the best result. We con-
jecture that the bias effectively consolidates the local frame-level information
and global video-level information in a layer-wise and head-wise manner.

Number of seed and context tokens. While TC is not sensitive to the choice
of ↵, as shown in Table 9(b), we picked ↵ = 0.3 as our default value, i.e., using
30% of total tokens as seed tokens. In Table 9(c), the context token number k is
chosen to set a modest amount of merging degree.



Analysis
● Learnable bias in MHSATC is helpful to distinguish local/global information
● TC is not sensitive to the choice of seed token ratio and the number of context tokens

● Text prompting conditioned on context tokens is the most effective prompting design

TC-CLIP 13

Table 10: Text prompting design ablation on the zero-shot setting. All the
models are evaluated without the weight ensemble.

Case Use context tokens? HMDB-51 UCF-101 K-600 All (�)

Baseline 52.3 ± 0.2 78.9 ± 1.1 70.7 ± 0.8 67.3

(a) Learnable prompt vectors 52.4 ± 0.4 78.4 ± 1.3 70.6 ± 0.7 67.1 (�0.2)
(b) Video-conditional prompting 53.2 ± 0.8 80.4 ± 0.7 71.6 ± 0.9 68.4 (+1.1)
(c) Video-conditional prompting X 53.7 ± 0.7 80.4 ± 0.9 72.7 ± 0.5 68.9 (+1.6)
(d) Vision-text late-fusion X 53.7 ± 0.7 79.0 ± 0.7 70.9 ± 0.6 67.9 (+0.6)

Class: “Disc golfing” (K-400)

Seed Tokens

Context Tokens

Fig. 6: Context token visualization.

TC-CLIP selects the informative seed to-
kens and summarizes them into context
tokens across frames. The disc (red) is
merged into one token over the video.

Class: “Moving something and something away from each other” (SSv2)

ViFi-CLIP: “Moving something and something so they collide with each other”

TC-CLIP: “Moving something and something away from each other”

Fig. 7: Attention visualization. While
ViFi-CLIP fails to attend to the hands
moving away and misinterprets the action
as colliding, TC-CLIP correctly predicts
by exploiting temporal consistency.

Text prompting design. In Table 10, we observe that (a) a naïve integration of
learnable prompt vectors without video instance conditioning is not particularly
helpful for the zero-shot transferability, rather decreasing the average accuracy.
In contrast, (b) employing VP design with [CLS] tokens consistently improves
the accuracy across all datasets, and (c) using context tokens further enhances
the performance, resulting in a 1.6%p gain. We also compare VP with (d) vision-
text late-fusion design, i.e., the cross-attention of context tokens and the final
representation of the text embedding. This design performs worse in UCF-101
and K-600 datasets than our VP, verifying the effectiveness of our design choice.

Context token visualization. Fig. 6 visualizes the seed tokens and context
tokens from the last layer of the vision encoder in TC-CLIP. In this video, the
informative regions regarding the action of disc golfing in each frame, including
the person and the disc, are selected as seed tokens. To visualize each context
token, we colorize its corresponding source token positions using the average
color of the input video patches of that region. Note that a single context token
(highlighted in red) successfully tracks the disc across multiple frames.

Attention visualization. Fig. 7 visualizes the attention map of ViFi-CLIP [34]
and TC-CLIP on the SSv2 dataset. In this video, where two hands grab objects
and then move away, ViFi-CLIP [34] fails to attend to the hands from the middle
of the sequence and misinterprets the action as colliding with each other. In

12 M. Kim et al.

Table 8: Effect of TC with various token aggregation strategies. TC con-
sistently outperforms the frame-wise attention baseline across several different token
selection and merging methods. K-shot action recognition results are reported with
the top-1 accuracy averaged over K = 2, 4, 8, 16. Default settings are marked in gray .
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which finally leads to 2.0%p gain after applying WE.

Token aggregation strategies. In Table 8, we verify the effectiveness of TC
across diverse token aggregation methods. Experiments are conducted on the
few-shot setting using the baseline model with TC. (a) While TC still works
well without token selection, we observe that collecting informative seed tokens
based on token importance, such as attention or saliency scores, improves the
quality of encoded tokens by suppressing the background. (b) Directly using
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jecture that the bias effectively consolidates the local frame-level information
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30% of total tokens as seed tokens. In Table 9(c), the context token number k is
chosen to set a modest amount of merging degree.



Visualizations
● Seed & context token visualization

○ Seed tokens mainly consist of patch tokens from the most informative regions in each frame
○ Context tokens successfully track and summarize a specific object or part throughout the video



Visualizations
● Attention visualization

○ TC-CLIP correctly predicts with temporal consistency
○ All other approaches fail to capture long-term temporal dynamics
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Query Token

Input Video: “Throwing something in the air and catching it”

(a) Cross-Frame Attention: “Moving something and something so they pass each other”

(b) Temporal Window Expansion: “Throwing something in the air and letting it fall”

(d) Temporal Contextualization (Ours): “Throwing something in the air and catching it”

(c) Joint Space-Time Attention: “Pretending to turn something upside down”

Fig. 1: Comparison of attention maps between various temporal modeling

approaches. Both (a) and (b) fail to recognize actions in the latter frames, whereas (c)
exhibits weak discriminability due to sparse attention on the background. In contrast,
(d) our method successfully focuses on informative regions across all frames, leading
to the accurate action recognition result.

from neighborhood frames in its self-attention operation as in Fig. 2(b), its tem-
poral scope is too narrow. Furthermore, ViFi-CLIP [34] simply averages frame-
wise representations with no inter-frame information exchanges. Such naïve ap-
proaches tend to bias the models towards static information in their represen-
tation learning (e.g., objects and backgrounds) and hamper learning temporal
dynamics (e.g., motion and temporal variations). To ensure the global inter-
actions of patch tokens in a spatio-temporal domain, one possible option is to
consider every patch token from all frames as a reference during the encoding
process as illustrated in Fig. 2(c).

Unfortunately, such a straightforward extension for temporally global inter-
actions in VLMs pretrained with short image-text pairs witnesses extrapolation
challenges [3, 31]; we have observed that a naïve extension of sequence length
along the temporal axis degrades its discriminability substantially, as shown in
Fig. 3(a). The joint space-time attention model spreads attention over many
patches and fails to focus on informative tokens to recognize actions, resulting
in suboptimal performance compared to the frame-wise attention baseline. More-
over, this approach suffers from heavy computational overhead due to numerous
redundant and similar tokens, which often correspond to background regions.

This paper presents Temporally Contextualized CLIP (TC-CLIP), a
novel paradigm for extending CLIP to videos by encoding holistic video infor-
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Query 
Token

Input Video: “Moving something closer to something”

Cross-Frame Attention : “Moving something away from something”

Temporal Window Expansion: “Moving something closer to something”

Temporal Contextualization (Ours): “Moving something closer to something”

Joint Space-Time Attention: “Pulling something from behind of something

Query 
Token

Input Video: “Pulling two ends of something so that it separates into two pieces”

Cross-Frame Attention: “Pretending or trying and failing to twist something”

Temporal Window Expansion: “Pretending or trying and failing to twist something”

Temporal Contextualization (Ours): “Pulling two ends of something so that it separates into two pieces”

Joint Space-Time Attention: “Bending something so that it deforms”

Fig. 11: Attention visualization of TC-CLIP in comparison with various temporal
information learning approaches on SSv2 dataset. We visualize the attention map in
the last vision encoder layer using a ball (top) and a hand (bottom) as a query (denoted
with red boxes). To visualize the attention map from TC, we assign attention values
of context tokens to their corresponding source patch token positions. Unlike other
approaches, our method successfully highlights informative regions globally over frames.
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