The 18th European Conference on Computer Vision ECCV 2024

Leveraging Temporal Contextualization for Video Action Recognition

Minji Kim^{1†}

Dongyoon Han²

Taekyung Kim^{2*}

Bohyung Han^{1*}

¹ Seoul National University ² NAVER AI Lab

* Work done during an internship at NAVER AI Lab * Corresponding authors

EUROPEAN CONFERENCE ON COMPUTER VISION

Background

- Fine-tuning image-based VLMs (e.g., CLIP) for video action recognition enables open-vocabulary generalization w/o expensive video-text pretraining
- A naïve baseline: frame-wise attention
 - ightarrow Limitation: no token interactions in the temporal axis

Contrastive Language-Image Pretraining (CLIP)

Fine-tune CLIP with video-text pairs

Background

• To consider **temporal cues** during the frame-wise representation encoding, previous works additionally incorporate **reference tokens**:

$$\mathbf{z}_t^l = f_{\theta_v}^l(\mathbf{z}_t^{l-1}, \mathbf{s}^{l-1})$$

t-th frame patch tokens reference tokens

• However, these reference tokens are *insufficient* for proper temporal modeling

Limitation of Previous Temporal Modeling

- Short-range token interactions hinder models capturing essential temporal dynamics
- \rightarrow <u>We need global interactions</u> to achieve better video representations!

Limitation of Previous Temporal Modeling

- A naïve approach for global interactions: using all patch tokens as a reference
- Problem: extending CLIP's temporal sequence length **degrades attention quality** because it wasn't trained on long sequences

(c) Joint Space-Time Attention

Joint Space-Time Attention: "Pulling something from behind of something"

Patch tokens from all frames

Extrapolation challenge Costly / Suboptimal performance

Solution: Temporal Contextualization

• Key Idea: Summarize informative tokens from the entire video into a small set of tokens, called *context tokens*, and reference them during feature encoding

Solution: Temporal Contextualization

• Key Idea: Summarize informative tokens from the entire video into a small set of tokens, called *context tokens*, and reference them during feature encoding

Using *context tokens* as a reference during the feature encoding consistently improves action recognition performance.

Deliver **global** information Maintain CLIP's **effective length**

Temporally Contextualized CLIP (TC-CLIP)

- A novel paradigm of extending CLIP to videos by encoding *holistic* video information through advanced temporal analysis
 - 1. Temporal Contextualization (TC): allows *global interactions* by summarizing pivotal video information into context tokens and referencing them during the encoding process
 - 2. Video-conditional Prompting (VP): injects *instance contexts* into text modality to support lack of textual semantics in action recognition benchmarks
 - 3. Solid performance: TC-CLIP achieves SOTA on diverse benchmarks & protocols

- A layer-wise temporal information infusion mechanism for videos
- Three steps of TC

- Step 1) Informative token selection in each frame
 - To avoid *redundant* tokens in videos, we select **seed tokens** by using **CLS attention scores** obtained from self-attention operation **in each frame** as criteria

- Step 2) Spatio-temporal context summarization
 - To obtain **context tokens**, **cluster and merge** all the seed tokens from all frames

by using token aggregation function

- Step 3) Temporal context infusion
 - Finally, the summarized context is **infused** to all patch tokens by **expanding key-value** pairs:

Video-conditional Prompting (VP)

- Generates **instance-level textual prompts** that support the **lack of textual semantics** in action recognition datasets, where category names are the only description of actions (*e.g., skateboarding, skydiving, ski jumping*)
- Video information from the context tokens is injected to the text prompt vectors based on a cross-attention mechanism

Video-conditional Prompting (VP)

• We perform video-conditional prompting before the last text encoder layer:

prompt vectors
class name tokens
$$\begin{bmatrix} \mathbf{p}^{l}, \mathbf{c}^{l} \end{bmatrix} = \begin{cases} f_{\theta_{c}}^{l} ([f_{\theta_{\mathrm{VP}}}(\mathbf{p}^{l-1}, \mathbf{s}_{\mathrm{proj}}^{l}), \mathbf{c}^{l-1}]) & \text{if } l = L_{c} \\ f_{\theta_{c}}^{l} ([\mathbf{p}^{l-1}, \mathbf{c}^{l-1}]) & \text{otherwise.} \end{cases}$$

$$\hat{\mathbf{p}}^{l-1} = \mathrm{MHCA}(\mathrm{LN}_{p}(\mathbf{p}^{l-1}), \mathrm{LN}_{s}(\mathbf{s}_{\mathrm{proj}}^{l})) + \mathbf{p}^{l-1} \\ \tilde{\mathbf{p}}^{l-1} = \mathrm{FFN}(\mathrm{LN}(\hat{\mathbf{p}}^{l-1}) + \hat{\mathbf{p}}^{l-1}) \end{cases}$$

Experiments

• SOTA performance on zero/few-shot, base-to-novel, fully-supervised action recognition

Method	WE	HMDB-51	UCF-101	K600 (Top-1)	K600 (Top-5)	All (Top-1)
Vanilla CLIP [32]		40.8 ± 0.3	63.2 ± 0.2	59.8 ± 0.3	83.5 ± 0.2	54.6
ActionCLIP $[39]^{\dagger}$		49.1 ± 0.4	68.0 ± 0.9	56.1 ± 0.9	83.2 ± 0.2	57.7
A5 [14]		44.3 ± 2.2	69.3 ± 4.2	55.8 ± 0.7	81.4 ± 0.3	56.5
X-CLIP [29]		44.6 ± 5.2	72.0 ± 2.3	65.2 ± 0.4	86.1 ± 0.8	60.6
Vita-CLIP [41]		48.6 ± 0.6	75.0 ± 0.6	67.4 ± 0.5	-	63.7
ViFi-CLIP [34] [†]		52.3 ± 0.2	78.9 ± 1.1	70.7 ± 0.8	92.1 ± 0.3	<u>67.3</u>
TC-CLIP (Ours)		$\textbf{53.7} \pm 0.7$	$\textbf{80.4} \pm 0.9$	$\textbf{72.7} \pm 0.5$	$\textbf{93.2}\pm0.2$	68.9
ActionCLIP $[39]^{\dagger}$	\checkmark	51.9 ± 0.5	74.2 ± 1.0	67.5 ± 1.2	90.7 ± 0.1	64.5
ViFi-CLIP [34] [†]	\checkmark	52.2 ± 0.7	81.0 ± 0.9	73.9 ± 0.5	93.3 ± 0.3	69.0
Open-VCLIP [42]	\checkmark	53.9 ± 1.2	$\textbf{83.4} \pm 1.2$	73.0 ± 0.8	93.2 ± 0.1	70.1
TC-CLIP (Ours)	\checkmark	54.2 ± 0.7	82.9 ± 0.6	$\textbf{75.8} \pm 0.5$	94.4 ± 0.2	71.0
Using LLM-based to	ext aug	mentation				
MAXI [24]	√ -	52.3 ± 0.7	78.2 ± 0.8	71.5 ± 0.8	92.5 ± 0.4	67.3
OST [4]	\checkmark	55.9 ± 1.2	79.7 ± 1.1	75.1 ± 0.6	94.6 ± 0.2	70.2
FROSTER [10]	\checkmark	54.8 ± 1.3	84.8 ± 1.1	74.8 ± 0.9	-	71.5
TC-CLIP (Ours)	\checkmark	56.0 ± 0.3	$\textbf{85.4}\pm0.8$	78.1 ± 1.0	$\textbf{95.7}\pm0.3$	73.2

Zero-shot action recognition

Few-shot action recognition

		HMI	DB-51			UCI	F-101			SS	Sv2	All	
Method	$\overline{K=2}$	$K{=}4$	$K{=}8$	$K{=}16$	K=2	$K{=}4$	$K{=}8$	$K{=}16$	$K{=}2$	$K{=}4$	$K{=}8$	$K{=}16$	Avg.
Vanilla CLIP [32]	41.9	41.9	41.9	41.9	63.6	63.6	63.6	63.6	2.7	2.7	2.7	2.7	36.1
ActionCLIP [39]	47.5	57.9	57.3	59.1	70.6	71.5	73.0	91.4	4.1	5.8	8.4	11.1	46.5
A5 [14]	39.7	50.7	56.0	62.4	71.4	79.9	85.7	89.9	4.4	5.1	6.1	9.7	46.8
X-CLIP [29]	53.0	57.3	62.8	64.0	76.4	83.4	88.3	91.4	3.9	4.5	6.8	10.0	50.2
ViFi-CLIP [34]	57.2	62.7	64.5	66.8	80.7	85.1	<u>90.0</u>	<u>92.7</u>	6.2	7.4	8.5	12.4	52.9
TC-CLIP (Ours)	57.3	62.3	67.3	68.6	85.9	89.9	92.5	94.6	7.3	8.6	9.3	14.0	54.8
Using LLM-based text augmentation													
OST [4]	59.1	62.9	<u>64.9</u>	68.2	82.5	<u>87.5</u>	91.7	<u>93.9</u>	<u>7.0</u>	7.7	8.9	12.2	53.9
TC-CLIP (Ours)	58.6	63.3	65.5	68.8	86.8	90.1	92.0	94.3	7.3	8.6	9.3	14.0	54.9

Base-to-novel generalization

		K-400		Η	MDB-	51	U	UCF-10	1		SSv2		А	ll (Avg	g.)
Method	Base	Novel	$_{\rm HM}$	Base	Novel	$_{\rm HM}$	Base	Novel	HM	Base	Novel	HM	Base	Novel	HM
Vanilla CLIP [32]	62.3	53.4	57.5	53.3	46.8	49.8	78.5	63.6	70.3	4.9	5.3	5.1	49.8	42.3	45.7
ActionCLIP [39]	61.0	46.2	52.6	69.1	37.3	48.5	90.1	58.1	70.7	13.3	10.1	11.5	58.5	37.9	46.0
A5 [14]	69.7	37.6	48.8	46.2	16.0	23.8	90.5	40.4	55.8	8.3	5.3	6.4	53.7	24.8	33.9
X-CLIP [29]	74.1	56.4	64.0	69.4	45.5	55.0	89.9	58.9	71.2	8.5	6.6	7.4	60.5	41.9	49.5
ViFi-CLIP [34]	76.4	61.1	67.9	73.8	53.3	61.9	92.9	67.7	78.3	16.2	12.1	13.9	64.8	48.6	55.5
Open-VCLIP [42] [†]	76.5	<u>62.6</u>	<u>68.9</u>	70.3	50.4	58.9	94.8	77.5	<u>85.3</u>	16.0	11.0	13.0	64.4	50.4	56.5
TC-CLIP (Ours)	78.9	63.6	70.4	73.3	54.1	62.2	95.5	78.0	85.9	17.5	13.4	15.2	66.3	52.3	58.5
Using LLM-based	text a	ugmen	tation	,											
FROSTER [10]	77.8	64.3	70.4	74.1	58.0	65.1	95.3	80.0	87.0	18.3	12.2	14.6	66.4	53.6	59.3
TC-CLIP (Ours)	79.1	65.4	71.6	73.3	59.1	65.5	95.4	81.6	88.0	17.5	13.4	15.2	66.3	54.9	60.1

Fully-supervised action recognition

Method	Top-1	Top-5	F	Views
ActionCLIP [39]	83.8	96.2	32	10×3
X-CLIP [29]	84.7	96.8	16	4×3
Vita-CLIP [41]	82.9	96.3	16	4×3
ViFi-CLIP [34]	83.9	96.3	16	4×3
OST [4]	83.2	-	16	1×1
TC-CLIP (Ours)	85.2	96.9	16	4×3

Analysis

Component-wise ablation: TC and VP are both effective

	With	out weight-	space ense	mbling	With weight-space ensembling					
Case	HMDB-51	UCF-101	K-600	All (Δ)	HMDB-51	UCF-101	K-600	All (Δ)		
Baseline	52.3 ± 0.2	78.9 ± 1.1	70.7 ± 0.8	67.3	$ 52.2\pm0.7$	81.0 ± 0.9	73.9 ± 0.5	69.0		
(a) + TC	53.6 ± 0.2	78.6 ± 1.0	71.8 ± 0.7	68.0(+0.7)	54.3 ± 0.6	81.9 ± 1.0	75.5 ± 1.0	70.6(+1.6)		
(b) + VP	53.2 ± 0.8	80.5 ± 0.7	71.6 ± 0.9	68.4(+1.1)	53.4 ± 0.8	82.0 ± 0.9	74.7 ± 0.7	70.0(+1.0)		
(c) + TC + VP	53.7 ± 0.7	80.4 ± 0.9	72.7 ± 0.5	68.9(+1.6)	54.2 ± 1.1	82.9 ± 0.9	75.8 ± 0.4	71.0(+2.0)		

- TC is robust across diverse token aggregation strategies
 - (a) Seed token selection strategy.

(b) Context token summarization strategy.

HMDE	BUCF	SSv2	2 All (Δ)	Case	HMDE	BUCF	SSv2	2 All (Δ)
62.6	89.2	8.7	53.5	Baseline	62.6	89.2	8.7	53.5
62.8	89.8	9.7	54.1 (+0.6)	No merge	57.2	85.6	7.7	50.2 (-3.3)
62.3	89.8	9.8	54.0 (+0.5)	Random merge	58.8	87.1	7.5	51.2(-2.3)
62.5	89.4	9.3	53.7 (+0.2)	K-means [25]	62.1	89.7	9.0	53.6(+0.1)
63.4	89.9	9.7	$54.3 \ (+0.8)$	DPC-KNN [13]	63.3	90.2	9.8	54.4(+0.9)
63.4	90.2	9.9	54.5(+1.0)	Bipartite soft matching $[1, 15]$	63.4	90.2	9.9	54.5(+1.0)
62.9	90.3	9.6	$54.2 \ (+0.7)$	Bipartite w/ attention weights	62.9	89.8	9.9	54.2(+0.7)
63.5	90.3	9.8	54.5(+1.0)	Bipartite w/ saliency weights [5] 62.4	89.9	9.6	$54.0\ (+0.5)$
	HMDE 62.6 62.8 62.3 62.5 63.4 63.4 62.9 63.5	HMDB UCF 62.6 89.2 62.8 89.8 62.3 89.8 62.5 89.4 63.4 89.9 63.4 90.2 62.9 90.3 63.5 90.3	HMDB UCF SSv2 62.6 89.2 8.7 62.8 89.8 9.7 62.3 89.8 9.8 62.5 89.4 9.3 63.4 89.9 9.7 63.4 90.2 9.9 62.9 90.3 9.6 63.5 90.4 9.8	HMDB UCF SSv2 All (Δ) 62.6 89.2 8.7 53.5 62.8 89.8 9.7 54.1 (+0.6) 62.3 89.8 9.8 54.0 (+0.5) 62.5 89.4 9.3 53.7 (+0.2) 63.4 90.2 9.9 54.3 (+0.8) 63.4 90.2 9.9 54.5 (+1.0) 62.9 90.3 9.6 54.2 (+0.7) 63.5 90.3 9.8 54.5 (+1.0)	HMDB UCF SSv2 All (Δ) Case 62.6 89.2 8.7 53.5 Baseline 62.8 89.8 9.7 54.1 (+0.6) No merge 62.3 89.8 9.8 54.0 (+0.5) Random merge 62.5 89.4 9.3 53.7 (+0.2) K-means [25] 63.4 90.2 9.9 54.5 (+1.0) Bipartite soft matching [1, 15] 62.9 90.3 9.6 54.2 (+0.7) Bipartite w/ attention weights 63.5 90.3 9.8 54.5 (+1.0) Bipartite w/ saliency weights [5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HMDB UCF SSv2 All (Δ)CaseHMDB UCF SSv262.689.28.753.5Baseline62.689.28.762.889.89.754.1 (+0.6)No merge57.285.67.762.389.89.854.0 (+0.5)Random merge58.887.17.562.489.99.754.3 (+0.8)DPC-KNN [13]63.390.29.863.490.29.954.5 (+1.0)Bipartite soft matching [1,15]63.490.29.963.590.39.854.5 (+1.0)Bipartite w/ attention weights62.989.89.963.590.39.854.5 (+1.0)Bipartite w/ saliency weights [5]62.489.99.6

Analysis

- Learnable bias in MHSA_{TC} is helpful to distinguish local/global information
- TC is not sensitive to the choice of seed token ratio and the number of context tokens

(a) Positional embedding design.					(b)	Seed	toker	ı rat	io α .	(0	(c) Context token k .				
Case	HMDB	BUCF	SSv2	All	α	HMDE	UCF	SSv2	All	k	HMDB	UCF	SSv2	All	
Spatial embedding	62.9	90.0	9.8	54.2	0.2	62.6	90.1	9.8	54.2	16	63.1	89.3	9.1	53.8	
Joint space-time embedding	63.2	90.2	9.8	54.4	0.3	63.4	90.2	9.9	54.5	32	63.6	89.9	9.4	54.3	
Spatial embedding $+$ Bias	63.4	90.2	9.9	54.5	0.4	63.2	90.4	9.8	54.5	64	63.7	90.1	9.7	54.5	
Joint embedding + Bias	62.9	90.2	9.8	54.3	0.5	63.3	90.3	9.8	54.5	96	63.4	90.2	9.9	54.5	
					0.6	63.1	90.2	9.8	54.4	128	62.8	90.1	9.9	54.3	

• **Text prompting conditioned on context tokens** is the most effective prompting design

Case	Use context tokens?	HMDB-51	UCF-101	K-600	All (Δ)
Baseline		52.3 ± 0.2	78.9 ± 1.1	70.7 ± 0.8	67.3
(a) Learnable prompt vectors		52.4 ± 0.4	78.4 ± 1.3	70.6 ± 0.7	67.1 (-0.2)
(b) Video-conditional prompting		53.2 ± 0.8	80.4 ± 0.7	71.6 ± 0.9	68.4 (+1.1)
(c) Video-conditional prompting	\checkmark	53.7 ± 0.7	80.4 ± 0.9	72.7 ± 0.5	68.9(+1.6)
(d) Vision-text late-fusion	\checkmark	53.7 ± 0.7	79.0 ± 0.7	70.9 ± 0.6	$67.9 \ (+0.6)$

Visualizations

- Seed & context token visualization
 - Seed tokens mainly consist of patch tokens from the most informative regions in each frame
 - **Context tokens** successfully track and summarize a specific object or part throughout the video

Temporal Window Expansion: "Moving something closer to something"

Visualiz

- Attention visualization
 - TC-CLIP correctly predicts with temporal co
 - All other approaches fail to capture long-te

Temporal Contextualization (Ours): "Moving something closer to something"

https://github.com/naver-ai/tc-clip

minji@snu.ac.kr taekyung.k@navercorp.com

EUROPEAN CONFERENCE ON COMPUTER VISION